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Abstract. We propose a reciprocal-space version of the KKR band theory and use it 10 study 
the electronic structure of a quasiperiodic system. Explicit, numerical results are presented 
for a Fibonacci chain of square well potentials 

1. Introduction 

Although mathematical techniques for describing the structure of quasicrystals [I]  are 
now well developed [2], methods for calculating their electronic spectra are still in a 
primitive state [3,4,5]. Evidently, the problem is that while the lack of conventional 
periodicity precludes the use of the all powerful Bloch theorem, finite cluster real space 
techniques are also of limited value due to the fact that quasiperiodicity is the property 
of infinitely long sequences. In this paper we present a method which deals with the 
electronic structure of quasiperiodic systems in reciprocal space but without relying on 
the Bloch theorem. 

In structure determinations, based on diffraction experiments, the observable is the 
structure constant S(k) .  For periodic systems S(k) is characterized by the Bragg peaks. 
For quasicrystals S ( k )  consists of a dense set of delta functions with variable weights. 
The most useful descriptions of such quasiperiodic systems are prescriptions for cal- 
culating S(k). Our aim is to develop a method for solving Schrodinger’s equation for a 
quasiperiodic array of potential wells using the structure constant of sites, S(k) directly. 

Of course, in lowest order perturbation theory the first corrections to the plane wave 
spectrum involve S(k) directly [6], However, the analysis cannot be continued to higher 
order and the interesting systems like AI,MnZO or Tio.sVo.l all contain strong scatterers. 
The way forward is to note that the multiple scattering approach to the electronic 
structure, as used by Korringa 171 in his derivation of the KKR method of band theory, 
separates the problem of individual scattering centres and that of their geometrical 
arrangement [7,8,9]. In what follows we shall make use of this unique feature of that 
approach. 

We shall consider non-overlapping spherically symmetric potential wells. The scat- 
tering of an electron at each site i is exactly described by the partial wave scattering 
amplitude 

f r . L ( ~ )  = (1/2i)(exp(i261(~) - 1)) (1) 
where & ( E )  is the usual scattering phase shift for the angular momentum channell. The 
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geometrical arrangement of the scattering centres wiil enter thc theory through the 
structure factorgr.,L,(Ri - R,; E )  which describesthe propagation offree, spherical waves 
whose angular momentum about the site R, is L ‘ ,  where L‘denotes both the azimuthal 
and polar quantum numbers: m’ and [‘respectively, and about thej’th site is L. We shall 
cast the multiple scattering equations into such a form that the arrangements of sites 
enter into the determination of the eigenvalues and eigenfunctions only through the 
strucuri constant S(k). 

The most efficient descriptions of the structure constant S(k) for quasiperiodic 
systems appear to he those which make use of Bragg peaks which project down from a 
higher dimensional space into the subspace of natural dimension with incommensurate 
orientation [Z, 101. This suggests that we could also consider the Schrodinger equation 
in the same, higher dimensional space, where the potential function is periodic. and 
study ways of projecting the solutions back into the natural space [ll]. The main 
achievement of the present paper is a method which bypasses the need to study the 
Schrodinger equation in higher dimensions. Accordingly. once the projection to find 
the structure constant S ( k )  has been accomplished for a given problem, in our approach, 
the solution of the Schrodinger equation proceeds in the natural reciprocal space using 
S(k) .  

In the next section we derive the fundamental equations of the new approach. In 
section 3 we illustrate how the method works for a simple one-dimensional model. 

2. Multiple scattering theory for a quasiperiodic arrangement of scatterers in reciprocal 
space 

We wish to find the energy eigenstates of a Schrodinger equation corresponding to 
an arbitrary arrangement of non-overlapping spherically symmetric scattering centres 
[8,9]. The multiple scattering approach to this problem is to look for a set of self- 
consistent incident and scattered waves such that the incident wave to every site is the 
sum of the scattered waves from all the other sites. For each site labelled by i we take 
the Lth incident partial wave to be the form of ai(€) jr(&lr , / )YL(?,)  wherer, = r - R,, 
i, is the unit vector in the direction of r, and YL is the usual, complex spherical harmonic. 
The self-consistency condition mentioned above implies [8,9] that the amplitudes 
ai(&) satisfy the following set of linear equations: 

where the single-site r-matrix on the energy shell [‘(E) is simply related to the scattering 
amplitude f L ( E )  by f L ( ~ )  = (I/v~)~~(E), and the real space KKRStnJCtUre factor matrix, 
gL.Lt(R,,; E )  is given by 

(3) gL,‘,(R,,; E )  = 4ziZ i ’ ” ‘ - ‘ . C ~ L h ~ ( ~ l R , , l ) Y ~ ( ~ , , ) .  
L 

In  the last of these relations h,i is a spherical Hankel function, and the Gaunt numbers 
are defined by 

Ciy,, = dQ YL(Q)YL. (Q’ )YL. (Q) .  (4) I 
Clearly, the energy eigenvalues are determined from the condition that the deter- 

minant of the coefficients in equation (2 )  should vanish: 
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I I ~ L ' ( E ) ~ L , L , ~ ; , ~  - gL.L'(Rij;  ~ ) l l  = 0. ( 5 )  

For a periodic crystal we could use Bloch's theorem and search for the solution of 
equation (2) in the form 

ui = a,@) exp(ikR,). (6)  

Ilt;'(E)6L.L, - gL,L-(k;  4 = 0 

g , .C(k ;  E )  = 2 exP(ik(R, - R , ) ) ~ L . L , ( R ~ ;  E ) .  

This leads to the familiar KKR result that 

(7) 

where g L , J k ;  E )  is the lattice Fourier transform ofgL.Lp(Rii; E ) .  Namely 

(8) 
i 

For a quasiperiodic system we may attempt to find the solution of equation (2) by 
using a full Fourier transform instead of the Bloch condition as in equation (6). Using 
the usual box quantization to generate a discrete set of wave vectors we write 

a i  = u,(k)exp(-ikR;). (9) 
k 

Substituting equation (9) into equation (2), multiplying by exp(ikR,) and summing 
over i, we find 

2 k' ( ~ - ' ( ~ ) S ( k - k ' ) - ~ S ( k - k " ) g ( K ' ; e ) S ( k " - k ' ) )  Y - - d k )  = 0 (10) 

where for simplicity we'have introduced the matrix notation in the L indices. The S(k) 
structure constant is given by 

S(k)  = 'c. exp(ikRi) (11) 

andgL,'(k; E )  is the Fourier-transform 

gL,"(k; E) = 1 d5rgL,L,(r ;  E )  exp(irk). (12) 

Furthermore 

gL,L.(R,; E )  = exp(-ikR,)gL.L,(k E ) .  (13) 
X 

For a quasiperiodic lattice, S(k) can be obtained by projection from aperiodic lattice 
of higher dimensions 12, lo]. As a consequence, S(k) has the form 

S(k) = 2 C(Gi(C'1))6(k - GI') 
c 

where the Gs are the reciprocal lattice vectors of the higher dimensional periodic lattice, 
GI1 is the projection of G onto the subspace of the quasicrystal while GI is the projection 
of G onto the complementary subspace. 
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Substituting the expression above into equation (10) we find that 

f - l ( E ) b ( k - ~ I I )  - C c(c: - c: )g(k - cf ; e)b(k-  G ! )  = o (15) 
"g 

where 

h ( k )  = 2 C(k - C')g(k - C"). 
"$1 

This is then our principal formal result. The particular values of k and E for which 
equation (15) has solutions give the dispersion relation E~ and the corresponding coef- 
ficient functions b , ~ ( k )  describe the related eigcnfunctions. As advertised, being based 
on equations (14), (15) and (16) our procedure involves the arrangement of sites only 
through the structure constant S ( k ) .  It can be regarded as the reciprocal space RKR 
equation for quasiperiodic systems. 

I t  is interesting to note that equation (15) shows some resemblance to that dcrived 
by Lu and Birman [ 111 but, asit isclear. we did not have tointroduce a higher dimensional 
pseudo-SchrBdinger equation. 

Note that the set of Cl! vectors is infinitely dense. Thus equation (15) is an integral 
equation rather than a set of linear equations as it would be for a periodic structure. 

In this paper we do not propose a general method for solvingequation (15). Instead, 
we investigate a simple and straightforward approximation scheme with relevance to 
quasiperiodic potentials. The procedure is based on the observation that equation (15) 
becomes readily tractable if S(k) is periodic in k .  Fortunately, within the projection 
technique forgeneratingS(k) there isa natural sequence ofapproximationswhich rcnder 
S(k) periodic. This geometrical construction of successively better approximations to 
S(k) is often referred to  as the Euclidean algorithm. It consists of taking higher and 
higher rational approximations for the irrational, or incommensurate orientation [2] of 
the subspace into which the periodic structure is projected. In the next section we 
illustrate how this method works by explicit calculations for a Fibonacci chain of square 
well potentials. 

3. Solution in one dimension 

One-dimensional models for electrons in quasiperiodic potentials have been studied 
well before the advent of quasicrystals. This subject is interesting in itself and the 
problem is fairly well understood. In what follows we consider a one-dimensional model 
without suggesting that our way is a particularly useful approach to this problem. Our 
concern is to illustrate how the essentially three-dimensional method of the previous 
section works in practice. For this reason we deal with chains of square-well potentials 
in ways which are as closely analogous to three-dimensional procedures as possible. 

It has been shown by Butler [I21 that with the identifications shown in table 1 one 
can obtain the one-dimensional RRR equations in the same way and the bame form as in 
three dimensions. In this table. I = 0.1 correspond to the symmetric and antisymmetric 
solutions of the Schricdinger equation. So equation (15) can be written as 

where 1 and 6 now represent 2 x 2 matrices. Using a one-dimensional version of the - 
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Table 1. 
. .  

1999 

Euclidean algorithm to approximate S(k).  one obtains a series of structure constants, 
each containing discrete, equally spaced delta function peaks as shown in figure 1. For 
anyofthesestructureconstantsthesumoverallCcanbedividedintoafiniteandinfinite 
sum: 

N 

= c C[G: - G,$,(G?, + nA)]g[k - (G?, + n A ) ;  E] = 
m=1 ,I 

X b[k - (G?, + nA)]  

CIG1(GII + n A ) ]  = CIGL(Gll)). 

(18) 

(19) 

where A is the period of S(k )  (see figure 2): 

As a first step towards solving equation (18) for C given by equation (19), we may 
suppose that b(q) is also periodic; e.g. 

b(q + 4 = b(q). (20) 
With the help of this assumption, equation (18) can be rewritten to read 

N 

l - ' (&)b(k-GL)-  ?(G! , -GL)g(k-Gjn;&)b(k-Gj , , )=O (21) 
">=I  

In the latter formula the superscript (G'I) indicates that tl ;ummation should be taken 
over all G vectors with the same (fixed) GI' but different GI components. The discrete 
set of the GI1 vectors may be denoted by {Kn}  (figure 1). Evidently equation (21) has a 
solution if 

II= t - ' ( E ) G , , , - ~ ( K , - K , ) g ( k - K , , ; & ) l l = o  n,m=1,2,. . . , N .  (24) 
Itiseasytoshowthat thestructureconstantS(k) = &?(K)G(k - K) belongstothereal 
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S l k l  

" S l  r = l  

n.3 r.211 

, . . I ,  

n.5 r = 3 / 2  

I 

I r=f.618, . .  

n 

Figure 1. The structure consfants of the various approximants. n = 8. r = 513 corresponds 
to thc exxt Fibonacci chain. 

space rational approximants. Thus. it  is satisfying to  note that the solution of equation 
(24) is the same as the solution to the familiar 1.3,5,8. 13, . . . atoms per unit cell KRR 
equation. In what follows we shall investigate the eigenvalue spectra of our model by 
finding pairs of E and k for which equation (24) is satisfied, and then by determining the 
corresponding b(k)s. 

4. The method of 'folding out' 

Solvingequation (24)oneobtains the band structure in thecentral, small Brillouinzone: 
-6/2 < k < d / 2 .  Unfortunately. for higher and higher order rational approximates this 
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k 
Figure 2. The figure explains the definition of 6 and A 

Brillouin zone is, progressively. smaller and smaller and the conventional description 
of the electronic structure becomes less and less useful. In fact, in the quasicrystalline 
limit, the stateswill be labelled by the band index uonly askceases to beagoodquantum 
number. Evidently, this is due to the loss of translational invariance which leaves us with 
adensely ordered setof energy levelswithout any quantum number to label them. Under 
such circumstances the usual procedure is to study the statistics of the levels [13]. For 
instance, having reached the above conclusions in connection with the problem at hand, 
Holzer [13] followed this route. Here we shall propose an alternative. 

ofequation (24) are 
periodic with the period 6, the components b;(k) of eigenvectors are different in each 
smallBrillouin zone K,  - 6/2 -s k 5 K, + 6/2andrepeatonlywith the repeat'distance' 
A. This allows us to assign, uniquely, each state labelled by k, u to a particular small 
Brillouin zone K,  - 6/2 S k S K, + 6/2 within the large Brillouin zone -A/2 
k S A/2 according to the size of Ib;(k)l. In short, we associate the state k, u with the 
small Brillouin zone K, - 6/2 5 k s K. + 6/2 where the square of the amplitude 
Ib,"(k - K.)I' is the largest. Evidently, this procedure lends meaning to k outside the 
small Brillouin zone -6/2 S k S 6/2 all through the large Brillouin zone -A/ 
2 S k S A/2. Note, that A -+ = instead of 0 as the quasicrystalline limit is approached 
and hence k remains a useful variable, although not a good quantum number, even in 
that limit. 

To see how the 'folding out' procedure works, consider equation (24) for E,,, = 
I?(& - K,) replaced by a diagonal matrix cam"; b;(k) only in the small Brillouin zone 
K, - 6/2 S k .s K,, + 6/2, namely where 

and b,", (k) = 0 for all n' #-a, Thus within a wide range band of energies we can drop the 

Our method is based on the fact that while the eigenvalues 

Ilt-'(e) - Ef(k - - K,; ~ ) l l , , o  *.r 0 (25) 



Figure 3. (a )  The energy spectrum calculated usingequation (24) for the diagonal e. This 
band structure corresponds to one atom per unit cell lattice with a lattice constant k / A .  
( b )  The energy hands for the same structure as 3Lo). hut in Brilluuin zone ( - A / &  3/2) ,  
calculdred using $quation (7). (c) The energy spectrum calculated usingequation (24) with 
the off-diagonal Ccomponents switched on. (4 The outfolded handsol figure 3(c). For [he 
whole demonstration the r 3  = 211 rational approximant has been used as a model. 

bandindex vandlabelthestatebyk + K,>. Moreover,itiseasytoshowthat thedispersion 
relations e ,  in the various small Brillouin zones match up at the zone boundaries. In 
fact, equation (25) can  be recognized as the KKR equation for a chain with real space unit 
cell whose size is k / A  and, hence, the Brillouin zone is the interval -Ai2  s k < A/2, 
This is illustrated in figure 3 where we show & calculated by solving equation (25) in 
both the small and the large Brillouin zones. 

limit as the principal 
amplirude of the state. When the off-diagonal elements of are restorcd, e.g. we 
solve equation (24) instead of equation (25), for each state there will be finite amplitudes 
b,” (k )  corresponding to all the small Brillouin zones centred on the reciprocal lattice 
vectors -A/2  5 k S A/2 in addition to the principal amplitude. Neverthcless, we con- 
tinue to plot E ~ . ~ ,  in the Brillouin zone which is associated with its principal amplitude. 
This is our ‘folding out’ scheme. The result of the procedure for the cam = P6,, cases 
are compared with the folded out full solutions of equation (24) in figure 3. Clearly, the 
off-diagonal componentsof c,, gave rise to gaps at the small Brillouin zone boundaries. 
If we were to estimate the sizes of these gaps using perturbation theory we would 
find that they are proportional to the structure constant at K,. e.g. S(K,,), and the 
corresponding Fourier transform of the potential function I l l ,  131. Although the gap 
sizes oscillate with changes in the strength of the potential functions in the exact numeri- 
cal solutions to equation (24), the large gaps nevertheless appear at K.s wherc S(K,) is 

Let us refer to the single non-zero b;,,(k) in the diagonal 
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KIZ 
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K12 

IC1 

K12 

IC1 

K12 
Figure 4. The calculated bandstructures of various rational approximantscorresponding to 
3,5,8and 13atomsper unit cell plotted togetherwith the smplitudesofthestructureconstant 
ISI. We scaled the latter figures u,ith a factor of two in order to show the coincidence of the 
peaks and the gaps in the energy spectrum. 

large. This is illustrated in figure 4 where we display the results for the rational approx- 
imants r ,  = 2/1,3/2,5/3,8/5, which correspond to 3, 5,8 and 13 sites per real space 
unit cell. 

There are three final commentson the above results. Firstly, we note that at the low 
energy part of the spectra, where the occupied states will be found, the overall picture 
converges rather rapidly; namely, the large gaps occur at k vectors where S(k) is large, 
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and these pointsno longershihsubstantiallyas theorderofthe approximation increases. 
Thus, although k is not a good quantum number, neither is it a useless variable. In fact, 
our folding out procedure allowed us to make a contact between the electronic structure 
and principal features of the structure factor S(k)  measured in diffraction experiments. 
As the reader may recall this was the main purpose of setting up our reciprocal space 
KKR formalism. 

The second remark concerns the fine structure of the energy 'bands'. These continue 
to change as the quasicrystalline limit is approached and the small Brillouin zone of our 
discussion shrinks to zero. Evidently, our final result is not a dispersion relation, E ~ ,  
which is a continuous function of k .  Nevertheless, states in an energy range bB about E 
are associated with a region of wabe vector space 6k about k. In short we could expect 
that the main features of the above 'band' structure will manifest themselves in a 
momentum spectral function which could not be defined in terms of the limitiag process 
by the Euclidean algorithm. We shall return to this question in a separate publication. 

Our third and final remark is a reiteration of the fact that although we have studied 
here only a one-dimensional model explicitly, the procedure of the reciprocal space KKR 
formalism and the Euclidean algorithm for implementing i t  is fully applicable in two and 
three dimensions. Of course. we hasten to add that the rate of convergence will depend 
on how well it works in those more demanding circumstances. 
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